Quantifying Unknown Quantum Entanglement via a Hybrid Quantum-Classical Machine Learning Framework

04/25/2022
by   Xiaodie Lin, et al.
0

Quantifying unknown quantum entanglement experimentally is a difficult task, but also becomes more and more necessary because of the fast development of quantum engineering. Machine learning provides practical solutions to this fundamental problem, where one has to train a proper machine learning model to predict entanglement measures of unknown quantum states based on experimentally measurable data, say moments or correlation data produced by local measurements. In this paper, we compare the performance of these two different machine learning approaches systematically. Particularly, we first show that the approach based on moments enjoys a remarkable advantage over that based on correlation data, though the cost of measuring moments is much higher. Next, since correlation data is much easier to obtain experimentally, we try to better its performance by proposing a hybrid quantum-classical machine learning framework for this problem, where the key is to train optimal local measurements to generate more informative correlation data. Our numerical simulations show that the new framework brings us comparable performance with the approach based on moments to quantify unknown entanglement. Our work implies that it is already practical to fulfill such tasks on near-term quantum devices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset