Quantum query complexity of symmetric oracle problems
We study the query complexity of quantum learning problems in which the oracles form a group G of unitary matrices. In the simplest case, one wishes to identify the oracle, and we find a description of the optimal success probability of a t-query quantum algorithm in terms of group characters. As an application, we show that Ω(n) queries are required to identify a random permutation in S_n. More generally, suppose H is a fixed subgroup of the group G of oracles, and given access to an oracle sampled uniformly from G, we want to learn which coset of H the oracle belongs to. We call this problem coset identification and it generalizes a number of well-known quantum algorithms including the Bernstein-Vazirani problem, the van Dam problem and finite field polynomial interpolation. We provide character-theoretic formulas for the optimal success probability achieved by a t-query algorithm for this problem. One application involves the Heisenberg group and provides a family of problems depending on n which require n+1 queries classically and only 1 query quantumly.
READ FULL TEXT