Quantum superpositions of graphs
We provide a robust notion of quantum superpositions of graphs. Quantum superpositions of graphs crucially require node names for their correct alignment, as we demonstrate through a non-signalling argument. Nevertheless, node names are a fiducial construct, serving a similar purpose to the labelling of points through a choice of coordinates in continuous space. We explain that graph renamings are, indeed, a natively discrete analogue of diffeomorphisms. We show how to impose renaming invariance at the level of graphs and their quantum superpositions.
READ FULL TEXT