Quark: An Integer RISC-V Vector Processor for Sub-Byte Quantized DNN Inference

In this paper, we present Quark, an integer RISC-V vector processor specifically tailored for sub-byte DNN inference. Quark is implemented in GlobalFoundries' 22FDX FD-SOI technology. It is designed on top of Ara, an open-source 64-bit RISC-V vector processor. To accommodate sub-byte DNN inference, Quark extends Ara by adding specialized vector instructions to perform sub-byte quantized operations. We also remove the floating-point unit from Quarks' lanes and use the CVA6 RISC-V scalar core for the re-scaling operations that are required in quantized neural network inference. This makes each lane of Quark 2 times smaller and 1.9 times more power efficient compared to the ones of Ara. In this paper we show that Quark can run quantized models at sub-byte precision. Notably we show that for 1-bit and 2-bit quantized models, Quark can accelerate computation of Conv2d over various ranges of inputs and kernel sizes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset