Quasi-optimal hp-finite element refinements towards singularities via deep neural network prediction

by   Tomasz Sluzalec, et al.

We show how to construct the deep neural network (DNN) expert to predict quasi-optimal hp-refinements for a given computational problem. The main idea is to train the DNN expert during executing the self-adaptive hp-finite element method (hp-FEM) algorithm and use it later to predict further hp refinements. For the training, we use a two-grid paradigm self-adaptive hp-FEM algorithm. It employs the fine mesh to provide the optimal hp refinements for coarse mesh elements. We aim to construct the DNN expert to identify quasi-optimal hp refinements of the coarse mesh elements. During the training phase, we use the direct solver to obtain the solution for the fine mesh to guide the optimal refinements over the coarse mesh element. After training, we turn off the self-adaptive hp-FEM algorithm and continue with quasi-optimal refinements as proposed by the DNN expert trained. We test our method on three-dimensional Fichera and two-dimensional L-shaped domain problems. We verify the convergence of the numerical accuracy with respect to the mesh size. We show that the exponential convergence delivered by the self-adaptive hp-FEM can be preserved if we continue refinements with a properly trained DNN expert. Thus, in this paper, we show that from the self-adaptive hp-FEM it is possible to train the DNN expert the location of the singularities, and continue with the selection of the quasi-optimal hp refinements, preserving the exponential convergence of the method.


page 6

page 13

page 17

page 18

page 21

page 23


Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes

This article considers the extension of two-grid hp-version discontinuou...

Finite element method for singularly perturbed problems with two parameters on a Bakhvalov-type mesh in 2D

For a singularly perturbed elliptic model problem with two small paramet...

A hybrid finite element/neural network solver and its application to the Poisson problem

We analyze a hybrid method that enriches coarse grid finite element solu...

Adaptive segmentation of multiconductor transmission line boundaries in quasi-static analysis by the method of moments

The features of the quasi-static analysis of multiconductor transmission...

Self-Directed Online Machine Learning for Topology Optimization

Topology optimization by optimally distributing materials in a given dom...

Self-Directed Online Learning for Topology Optimization

Topology optimization by optimally distributing materials in a given dom...

A neural network multigrid solver for the Navier-Stokes equations

We present a deep neural network multigrid solver (DNN-MG) that we devel...

Please sign up or login with your details

Forgot password? Click here to reset