RAC Drawings of Graphs with Low Degree

06/29/2022
by   Patrizio Angelini, et al.
0

Motivated by cognitive experiments providing evidence that large crossing-angles do not impair the readability of a graph drawing, RAC (Right Angle Crossing) drawings were introduced to address the problem of producing readable representations of non-planar graphs by supporting the optimal case in which all crossings form 90 angles. In this work, we make progress on the problem of finding RAC drawings of graphs of low degree. In this context, a long-standing open question asks whether all degree-3 graphs admit straight-line RAC drawings. This question has been positively answered for the Hamiltonian degree-3 graphs. We improve on this result by extending to the class of 3-edge-colorable degree-3 graphs. When each edge is allowed to have one bend, we prove that degree-4 graphs admit such RAC drawings, a result which was previously known only for degree-3 graphs. Finally, we show that 7-edge-colorable degree-7 graphs admit RAC drawings with two bends per edge. This improves over the previous result on degree-6 graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset