Ranks of Tensor Networks for Eigenspace Projections and the Curse of Dimensionality

12/23/2020
by   Mazen Ali, et al.
0

The hierarchical (multi-linear) rank of an order-d tensor is key in determining the cost of representing a tensor as a (tree) Tensor Network (TN). In general, it is known that, for a fixed accuracy, a tensor with random entries cannot be expected to be efficiently approximable without the curse of dimensionality, i.e., a complexity growing exponentially with d. In this work, we show that the ground state projection (GSP) of a class of unbounded Hamiltonians can be approximately represented as an operator of low effective dimensionality that is independent of the (high) dimension d of the GSP. This allows to approximate the GSP without the curse of dimensionality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro