Realistic Deep Learning May Not Fit Benignly

06/01/2022
by   Kaiyue Wen, et al.
0

Studies on benign overfitting provide insights for the success of overparameterized deep learning models. In this work, we examine the benign overfitting phenomena in real-world settings. We found that for tasks such as training a ResNet model on ImageNet dataset, the model does not fit benignly. To understand why benign overfitting fails in the ImageNet experiment, we analyze previous benign overfitting models under a more restrictive setup where the number of parameters is not significantly larger than the number of data points. Under this mild overparameterization setup, our analysis identifies a phase change: unlike in the heavy overparameterization setting, benign overfitting can now fail in the presence of label noise. Our study explains our empirical observations, and naturally leads to a simple technique known as self-training that can boost the model's generalization performances. Furthermore, our work highlights the importance of understanding implicit bias in underfitting regimes as a future direction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset