Reconnoitering the class distinguishing abilities of the features, to know them better

11/23/2022
by   Payel Sadhukhan, et al.
0

The relevance of machine learning (ML) in our daily lives is closely intertwined with its explainability. Explainability can allow end-users to have a transparent and humane reckoning of a ML scheme's capability and utility. It will also foster the user's confidence in the automated decisions of a system. Explaining the variables or features to explain a model's decision is a need of the present times. We could not really find any work, which explains the features on the basis of their class-distinguishing abilities (specially when the real world data are mostly of multi-class nature). In any given dataset, a feature is not equally good at making distinctions between the different possible categorizations (or classes) of the data points. In this work, we explain the features on the basis of their class or category-distinguishing capabilities. We particularly estimate the class-distinguishing capabilities (scores) of the variables for pair-wise class combinations. We validate the explainability given by our scheme empirically on several real-world, multi-class datasets. We further utilize the class-distinguishing scores in a latent feature context and propose a novel decision making protocol. Another novelty of this work lies with a refuse to render decision option when the latent variable (of the test point) has a high class-distinguishing potential for the likely classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset