Recovery guarantee of weighted low-rank approximation via alternating minimization
Many applications require recovering a ground truth low-rank matrix from noisy observations of the entries, which in practice is typically formulated as a weighted low-rank approximation problem and solved by non-convex optimization heuristics such as alternating minimization. In this paper, we provide provable recovery guarantee of weighted low-rank via a simple alternating minimization algorithm. In particular, for a natural class of matrices and weights and without any assumption on the noise, we bound the spectral norm of the difference between the recovered matrix and the ground truth, by the spectral norm of the weighted noise plus an additive error that decreases exponentially with the number of rounds of alternating minimization, from either initialization by SVD or, more importantly, random initialization. These provide the first theoretical results for weighted low-rank via alternating minimization with non-binary deterministic weights, significantly generalizing those for matrix completion, the special case with binary weights, since our assumptions are similar or weaker than those made in existing works. Furthermore, this is achieved by a very simple algorithm that improves the vanilla alternating minimization with a simple clipping step. The key technical challenge is that under non-binary deterministic weights, naïve alternating steps will destroy the incoherence and spectral properties of the intermediate solutions, which are needed for making progress towards the ground truth. We show that the properties only need to hold in an average sense and can be achieved by the clipping step. We further provide an alternating algorithm that uses a whitening step that keeps the properties via SDP and Rademacher rounding and thus requires weaker assumptions. This technique can potentially be applied in some other applications and is of independent interest.
READ FULL TEXT