Reduced-Complexity Cross-Domain Iterative Detection for OTFS Modulation via Delay-Doppler Decoupling
In this paper, a reduced-complexity cross-domain iterative detection for orthogonal time frequency space (OTFS) modulation is proposed, which exploits channel properties in both time and delay-Doppler domains. Specifically, we first show that in the time domain effective channel, the path delay only introduces interference among samples in adjacent time slots, while the Doppler becomes a phase term that does not affect the channel sparsity. This “band-limited” matrix structure motivates us to apply a reduced-size linear minimum mean square error (LMMSE) filter to eliminate the effect of delay in the time domain, while exploiting the cross-domain iteration for minimizing the effect of Doppler by noticing that the time and Doppler are a pair of Fourier dual. The state (MSE) evolution was derived and compared with bounds to verify the effectiveness of the proposed scheme. Simulation results demonstrate that the proposed scheme achieves almost the same error performance as the optimal detection, but only requires a reduced complexity.
READ FULL TEXT