Reducing bias in difference-in-differences models using entropy balancing

11/09/2020
by   Matthew Cefalu, et al.
0

This paper illustrates the use of entropy balancing in difference-in-differences analyses when pre-intervention outcome trends suggest a possible violation of the parallel trends assumption. We describe a set of assumptions under which weighting to balance intervention and comparison groups on pre-intervention outcome trends leads to consistent difference-in-differences estimates even when pre-intervention outcome trends are not parallel. Simulated results verify that entropy balancing of pre-intervention outcomes trends can remove bias when the parallel trends assumption is not directly satisfied, and thus may enable researchers to use difference-in-differences designs in a wider range of observational settings than previously acknowledged.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro