Refined bounds for randomized experimental design

12/22/2020
by   Geovani Rizk, et al.
0

Experimental design is an approach for selecting samples among a given set so as to obtain the best estimator for a given criterion. In the context of linear regression, several optimal designs have been derived, each associated with a different criterion: mean square error, robustness, etc. Computing such designs is generally an NP-hard problem and one can instead rely on a convex relaxation that considers probability distributions over the samples. Although greedy strategies and rounding procedures have received a lot of attention, straightforward sampling from the optimal distribution has hardly been investigated. In this paper, we propose theoretical guarantees for randomized strategies on E and G-optimal design. To this end, we develop a new concentration inequality for the eigenvalues of random matrices using a refined version of the intrinsic dimension that enables us to quantify the performance of such randomized strategies. Finally, we evidence the validity of our analysis through experiments, with particular attention on the G-optimal design applied to the best arm identification problem for linear bandits.

READ FULL TEXT
research
11/04/2017

Approximate Supermodularity Bounds for Experimental Design

This work provides performance guarantees for the greedy solution of exp...
research
01/17/2018

A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments

We propose a class of subspace ascent methods for computing optimal appr...
research
05/27/2021

Towards Minimax Optimal Best Arm Identification in Linear Bandits

We study the problem of best arm identification in linear bandits in the...
research
01/27/2018

Ascent with Quadratic Assistance for the Construction of Exact Experimental Designs

In the area of experimental design, there is a large body of theoretical...
research
07/03/2015

Model-assisted design of experiments in the presence of network correlated outcomes

We consider the problem of how to assign treatment in a randomized exper...
research
03/08/2023

Estimating a scalar log-concave random variable, using a silence set based probabilistic sampling

We study the probabilistic sampling of a random variable, in which the v...
research
06/04/2018

Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling

Learning the minimum/maximum mean among a finite set of distributions is...

Please sign up or login with your details

Forgot password? Click here to reset