Registration of 3D Point Sets Using Correntropy Similarity Matrix

by   Ashutosh Singandhupe, et al.

This work focuses on Registration or Alignment of 3D point sets. Although the Registration problem is a well established problem and it's solved using multiple variants of Iterative Closest Point (ICP) Algorithm, most of the approaches in the current state of the art still suffers from misalignment when the Source and the Target point sets are separated by large rotations and translation. In this work, we propose a variant of the Standard ICP algorithm, where we introduce a Correntropy Relationship Matrix in the computation of rotation and translation component which attempts to solve the large rotation and translation problem between Source and Target point sets. This matrix is created through correntropy criterion which is updated in every iteration. The correntropy criterion defined in this approach maintains the relationship between the points in the Source dataset and the Target dataset. Through our experiments and validation we verify that our approach has performed well under various rotation and translation in comparison to the other well-known state of the art methods available in the Point Cloud Library (PCL) as well as other methods available as open source. We have uploaded our code in the github repository for the readers to validate and verify our approach


page 3

page 8

page 9

page 12

page 13

page 15

page 17

page 19


DetarNet: Decoupling Translation and Rotation by Siamese Network for Point Cloud Registration

Point cloud registration is a fundamental step for many tasks. In this p...

Non-Rigid Point Set Registration Networks

Point set registration is defined as a process to determine the spatial ...

A Robust Loss for Point Cloud Registration

The performance of surface registration relies heavily on the metric use...

Segregator: Global Point Cloud Registration with Semantic and Geometric Cues

This paper presents Segregator, a global point cloud registration framew...

ARCS: Accurate Rotation and Correspondence Search

This paper is about the old Wahba problem in its more general form, whic...

Registration Loss Learning for Deep Probabilistic Point Set Registration

Probabilistic methods for point set registration have interesting theore...

FINet: Dual Branches Feature Interaction for Partial-to-Partial Point Cloud Registration

Data association is important in the point cloud registration. In this w...

Please sign up or login with your details

Forgot password? Click here to reset