ReGVD: Revisiting Graph Neural Networks for Vulnerability Detection

10/14/2021
by   Van-Anh Nguyen, et al.
0

Identifying vulnerabilities in the source code is essential to protect the software systems from cyber security attacks. It, however, is also a challenging step that requires specialized expertise in security and code representation. Inspired by the successful applications of pre-trained programming language (PL) models such as CodeBERT and graph neural networks (GNNs), we propose ReGVD, a general and novel graph neural network-based model for vulnerability detection. In particular, ReGVD views a given source code as a flat sequence of tokens and then examines two effective methods of utilizing unique tokens and indexes respectively to construct a single graph as an input, wherein node features are initialized only by the embedding layer of a pre-trained PL model. Next, ReGVD leverages a practical advantage of residual connection among GNN layers and explores a beneficial mixture of graph-level sum and max poolings to return a graph embedding for the given source code. Experimental results demonstrate that ReGVD outperforms the existing state-of-the-art models and obtain the highest accuracy on the real-world benchmark dataset from CodeXGLUE for vulnerability detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro