Reinforcement learning for optimization of energy trading strategy

03/28/2023
by   Łukasz Lepak, et al.
0

An increasing part of energy is produced from renewable sources by a large number of small producers. The efficiency of these sources is volatile and, to some extent, random, exacerbating the energy market balance problem. In many countries, that balancing is performed on day-ahead (DA) energy markets. In this paper, we consider automated trading on a DA energy market by a medium size prosumer. We model this activity as a Markov Decision Process and formalize a framework in which a ready-to-use strategy can be optimized with real-life data. We synthesize parametric trading strategies and optimize them with an evolutionary algorithm. We also use state-of-the-art reinforcement learning algorithms to optimize a black-box trading strategy fed with available information from the environment that can impact future prices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset