Reinforcement learning for traffic signal control in hybrid action space
The prevailing reinforcement-learning-based traffic signal control methods are typically staging-optimizable or duration-optimizable, depending on the action spaces. In this paper, we propose a novel control architecture, TBO, which is based on hybrid proximal policy optimization. To the best of our knowledge, TBO is the first RL-based algorithm to implement synchronous optimization of the staging and duration. Compared to discrete and continuous action spaces, hybrid action space is a merged search space, in which TBO better implements the trade-off between frequent switching and unsaturated release. Experiments are given to demonstrate that TBO reduces the queue length and delay by 13.78 existing baselines. Furthermore, we calculate the Gini coefficients of the right-of-way to indicate TBO does not harm fairness while improving efficiency.
READ FULL TEXT