ReLBOT: A Transfer Learning Approach to Minimize Reinforcement Learning Risks in Smart Buildings
Smart buildings aim to optimize energy consumption by applying artificial intelligent algorithms. When a smart building is commissioned there is no historical data that could be used to train these algorithms. On-line Reinforcement Learning (RL) algorithms have shown significant promise, but their deployment carries a significant risk, because as the RL agent initially explores its action space it could cause significant discomfort to the building residents. In this paper we present ReLBOT, a new technique that uses transfer learning in conjunction with deep RL to transfer knowledge from an existing, optimized smart building, to the newly commissioning building, to reduce the adverse impact of the reinforcement learning agent's warm-up period. We demonstrate improvements of up to 6.2 times in the duration, and up to 132 times in prediction variance for the reinforcement learning agent's warm-up period.
READ FULL TEXT