Reliability optimization of friction-damped systems using nonlinear modes

12/28/2020
by   Malte Krack, et al.
0

A novel probabilistic approach for the design of mechanical structures with friction interfaces is proposed. The objective function is defined as the probability that a specified performance measure of the forced vibration response is achieved subject to parameter uncertainties. The practicability of the approach regarding the extensive amount of required design evaluations is strictly related to the computational efficiency of the nonlinear dynamic analysis. Therefore, it is proposed to employ a recently developed parametric reduced order model (ROM) based on nonlinear modes of vibration, which can facilitate a decrease of the computational burden by several orders of magnitude. The approach was applied to a rotationally periodic assembly of a bladed disk with underplatform friction dampers. The robustness of the optimum damper design was significantly improved compared to the deterministic approach, taking into account uncertainties in the friction coefficient, the excitation level and the linear damping. Moreover, a scale invariance for piecewise linear contact constraints is proven, which can be very useful for the reduction of the numerical effort for the analysis of such systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset