Removal of Batch Effects using Distribution-Matching Residual Networks

10/13/2016
by   Uri Shaham, et al.
0

Sources of variability in experimentally derived data include measurement error in addition to the physical phenomena of interest. This measurement error is a combination of systematic components, originating from the measuring instrument, and random measurement errors. Several novel biological technologies, such as mass cytometry and single-cell RNA-seq, are plagued with systematic errors that may severely affect statistical analysis if the data is not properly calibrated. We propose a novel deep learning approach for removing systematic batch effects. Our method is based on a residual network, trained to minimize the Maximum Mean Discrepancy (MMD) between the multivariate distributions of two replicates, measured in different batches. We apply our method to mass cytometry and single-cell RNA-seq datasets, and demonstrate that it effectively attenuates batch effects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro