Removing Connected Obstacles in the Plane is FPT

02/04/2020
by   Eduard Eiben, et al.
0

Given two points in the plane, a set of obstacles defined by closed curves, and an integer k, does there exist a path between the two designated points intersecting at most k of the obstacles? This is a fundamental and well-studied problem arising naturally in computational geometry, graph theory, wireless computing, and motion planning. It remains NP-hard even when the obstacles are very simple geometric shapes (e.g., unit-length line segments). In this paper, we show that the problem is fixed-parameter tractable (FPT) parameterized by k, by giving an algorithm with running time k^O(k^3)n^O(1). Here n is the number connected areas in the plane drawing of all the obstacles.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro