Representation Edit Distance as a Measure of Novelty

11/04/2021
by   Joshua Alspector, et al.
0

Adaptation to novelty is viewed as learning to change and augment existing skills to confront unfamiliar situations. In this paper, we propose that the amount of editing of an effective representation (the Representation Edit Distance or RED) used in a set of skill programs in an agent's mental model is a measure of difficulty for adaptation to novelty. The RED is an intuitive approximation to the change in information content in bit strings measured by comparing pre-novelty and post-novelty skill programs. We also present some notional examples of how to use RED for predicting difficulty.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro