Research Needed in Computational Social Science for Power System Reliability, Resilience, and Restoration

10/22/2020
by   Jaber Valinejad, et al.
0

In the literature, smart grids are modeled as cyber-physical power systems without considering the computational social aspects. However, end-users are playing a key role in their operation and response to disturbances via demand response and distributed energy resources. Therefore, due to the critical role of active and passive end-users and the intermittency of renewable energy, smart grids must be planned and operated by considering the computational social aspects in addition to the technical aspects. The level of cooperation, flexibility, and other social features of the various stakeholders, including consumers, prosumers, and microgrids, affect the system efficiency, reliability, and resilience. In this paper, we design an artificial society simulating the interaction between power systems and the social communities that they serve via agent-based modeling inspired by Barsade's theory on the emotional spread. The simulation results show a decline in the consumers' and prosumers' satisfaction levels induced by a shortage of electricity. It also shows the effects of social diffusion via the Internet and mass media on the satisfaction level. In view of the importance of computational social science for power system applications and the limited number of publications devoted to it, we provide a list of research topics that need to be achieved to enhance the reliability and resilience of power systems' operation and planning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset