Resource Allocation for Multi-Cell IRS-Aided NOMA Networks
This paper proposes a novel framework of resource allocation in multi-cell intelligent reflecting surface (IRS) aided non-orthogonal multiple access (NOMA) networks, where an IRS is deployed to enhance the wireless service. The problem of joint user association, subchannel assignment, power allocation, phase shifts design, and decoding order determination is formulated for maximizing the achievable sum rate. The challenging mixed-integer non-linear problem is decomposed into an optimization subproblem (P1) with continuous variables and a matching subproblem (P2) with integer variables. In an effort to tackle the non-convex optimization problem (P1), iterative algorithms are proposed for allocating transmission power, designing reflection matrix, and determining decoding order by invoking relaxation methods such as convex upper bound substitution, successive convex approximation, and semidefinite relaxation. In terms of the combinational problem (P2), swap matching-based algorithms are developed for achieving a two-sided exchange-stable state among users, BSs and subchannels. Numerical results demonstrate that: 1) the sum rate of NOMA networks is capable of being enhanced with the aid of the IRS; 2) the proposed algorithms for multi-cell IRS-aided NOMA networks can enjoy 28 21 trade-off between spectrum and energy efficiency can be tuned by judiciously selecting the location of the IRS.
READ FULL TEXT