RetiNet: Automatic AMD identification in OCT volumetric data

10/12/2016
by   Stefanos Apostolopoulos, et al.
0

Optical Coherence Tomography (OCT) provides a unique ability to image the eye retina in 3D at micrometer resolution and gives ophthalmologist the ability to visualize retinal diseases such as Age-Related Macular Degeneration (AMD). While visual inspection of OCT volumes remains the main method for AMD identification, doing so is time consuming as each cross-section within the volume must be inspected individually by the clinician. In much the same way, acquiring ground truth information for each cross-section is expensive and time consuming. This fact heavily limits the ability to acquire large amounts of ground truth, which subsequently impacts the performance of learning-based methods geared at automatic pathology identification. To avoid this burden, we propose a novel strategy for automatic analysis of OCT volumes where only volume labels are needed. That is, we train a classifier in a semi-supervised manner to conduct this task. Our approach uses a novel Convolutional Neural Network (CNN) architecture, that only needs volume-level labels to be trained to automatically asses whether an OCT volume is healthy or contains AMD. Our architecture involves first learning a cross-section pathology classifier using pseudo-labels that could be corrupted and then leverage these towards a more accurate volume-level classification. We then show that our approach provides excellent performances on a publicly available dataset and outperforms a number of existing automatic techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro