Robust Estimation and Inference for Expected Shortfall Regression with Many Regressors

12/11/2022
by   Xuming He, et al.
0

Expected Shortfall (ES), also known as superquantile or Conditional Value-at-Risk, has been recognized as an important measure in risk analysis and stochastic optimization, and is also finding applications beyond these areas. In finance, it refers to the conditional expected return of an asset given that the return is below some quantile of its distribution. In this paper, we consider a recently proposed joint regression framework that simultaneously models the quantile and the ES of a response variable given a set of covariates, for which the state-of-the-art approach is based on minimizing a joint loss function that is non-differentiable and non-convex. This inevitably raises numerical challenges and limits its applicability for analyzing large-scale data. Motivated by the idea of using Neyman-orthogonal scores to reduce sensitivity with respect to nuisance parameters, we propose a statistically robust (to highly skewed and heavy-tailed data) and computationally efficient two-step procedure for fitting joint quantile and ES regression models. With increasing covariate dimensions, we establish explicit non-asymptotic bounds on estimation and Gaussian approximation errors, which lay the foundation for statistical inference. Finally, we demonstrate through numerical experiments and two data applications that our approach well balances robustness, statistical, and numerical efficiencies for expected shortfall regression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset