Robust Image Registration via Empirical Mode Decomposition

11/12/2017
by   Reza Abbasi-Asl, et al.
0

Spatially varying intensity noise is a common source of distortion in images. Bias field noise is one example of such distortion that is often present in the magnetic resonance (MR) images. In this paper, we first show that empirical mode decomposition (EMD) can considerably reduce the bias field noise in the MR images. Then, we propose two hierarchical multi-resolution EMD-based algorithms for robust registration of images in the presence of spatially varying noise. One algorithm (LR-EMD) is based on registering EMD feature-maps of both floating and reference images in various resolution levels. In the second algorithm (AFR-EMD), we first extract an average feature-map based on EMD from both floating and reference images. Then, we use a simple hierarchical multi-resolution algorithm based on downsampling to register the average feature-maps. Both algorithms achieve lower error rate and higher convergence percentage compared to the intensity-based hierarchical registration. Specifically, using mutual information as the similarity measure, AFR-EMD achieves 42 transformation compared to intensity-based hierarchical registration. For LR-EMD, the error rate is 32 transformation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset