Robust Matrix Decomposition with Outliers

11/05/2010
by   Daniel Hsu, et al.
0

Suppose a given observation matrix can be decomposed as the sum of a low-rank matrix and a sparse matrix (outliers), and the goal is to recover these individual components from the observed sum. Such additive decompositions have applications in a variety of numerical problems including system identification, latent variable graphical modeling, and principal components analysis. We study conditions under which recovering such a decomposition is possible via a combination of ℓ_1 norm and trace norm minimization. We are specifically interested in the question of how many outliers are allowed so that convex programming can still achieve accurate recovery, and we obtain stronger recovery guarantees than previous studies. Moreover, we do not assume that the spatial pattern of outliers is random, which stands in contrast to related analyses under such assumptions via matrix completion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro