Robust uncertainty estimates with out-of-distribution pseudo-inputs training
Probabilistic models often use neural networks to control their predictive uncertainty. However, when making out-of-distribution (OOD) predictions, the often-uncontrollable extrapolation properties of neural networks yield poor uncertainty predictions. Such models then don't know what they don't know, which directly limits their robustness w.r.t unexpected inputs. To counter this, we propose to explicitly train the uncertainty predictor where we are not given data to make it reliable. As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space, and show how to leverage these in a practical Bayesian framework that casts a prior distribution over the model uncertainty. With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks such as regression and generative modelling
READ FULL TEXT