Rough sets and matroidal contraction
Rough sets are efficient for data pre-processing in data mining. As a generalization of the linear independence in vector spaces, matroids provide well-established platforms for greedy algorithms. In this paper, we apply rough sets to matroids and study the contraction of the dual of the corresponding matroid. First, for an equivalence relation on a universe, a matroidal structure of the rough set is established through the lower approximation operator. Second, the dual of the matroid and its properties such as independent sets, bases and rank function are investigated. Finally, the relationships between the contraction of the dual matroid to the complement of a single point set and the contraction of the dual matroid to the complement of the equivalence class of this point are studied.
READ FULL TEXT