RUCA: RUntime Configurable Approximate Circuits with Self-Correcting Capability

07/01/2022
by   Jingxiao Ma, et al.
0

Approximate computing is an emerging computing paradigm that offers improved power consumption by relaxing the requirement for full accuracy. Since real-world applications may have different requirements for design accuracy, one trend of approximate computing is to design runtime quality-configurable circuits, which are able to operate under different accuracy modes with different power consumption. In this paper, we present a novel framework RUCA which aims to approximate an arbitrary input circuit in a runtime configurable fashion. By factorizing and decomposing the truth table, our approach aims to approximate and separate the input circuit into multiple configuration blocks which support different accuracy levels, including a corrector circuit to restore full accuracy. By activating different blocks, the approximate circuit is able to operate at different accuracy-power configurations. To improve the scalability of our algorithm, we also provide a design space exploration scheme with circuit partitioning to navigate the search space of possible approximations of subcircuits during design time. We thoroughly evaluate our methodology on a set of benchmarks and compare against another quality-configurable approach, showcasing the benefits and flexibility of RUCA. For 3-level designs, RUCA saves power consumption by 36.57 by 51.32

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset