Safe Explicable Robot Planning

04/04/2023
by   Akkamahadevi Hanni, et al.
0

Human expectations stem from their knowledge of the others and the world. Where human-robot interaction is concerned, such knowledge about the robot may be inconsistent with the ground truth, resulting in the robot not meeting its expectations. Explicable planning was previously introduced as a novel planning approach to reconciling human expectations and the optimal robot behavior for more interpretable robot decision-making. One critical issue that remains unaddressed is safety during explicable decision-making which can lead to explicable behaviors that are unsafe. We propose Safe Explicable Planning (SEP), which extends explicable planning to support the specification of a safety bound. The objective of SEP is to find a policy that generates a behavior close to human expectations while satisfying the safety constraints introduced by the bound, which is a special case of multi-objective optimization where the solution to SEP lies on the Pareto frontier. Under such a formulation, we propose a novel and efficient method that returns the safe explicable policy and an approximate solution. In addition, we provide theoretical proof for the optimality of the exact solution under the designer-specified bound. Our evaluation results confirm the applicability and efficacy of our method for safe explicable planning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset