Sampling from multimodal distributions using tempered Hamiltonian transitions
Hamiltonian Monte Carlo (HMC) methods are widely used to draw samples from unnormalized target densities due to high efficiency and favorable scalability with respect to increasing space dimensions. However, HMC struggles when the target distribution is multimodal, because the maximum increase in the potential energy function (i.e., the negative log density function) along the simulated path is bounded by the initial kinetic energy, which follows a half of the χ_d^2 distribution, where d is the space dimension. In this paper, we develop a Hamiltonian Monte Carlo method where the constructed paths can travel across high potential energy barriers. This method does not require the modes of the target distribution to be known in advance. Our approach enables frequent jumps between the isolated modes of the target density by continuously varying the mass of the simulated particle while the Hamiltonian path is constructed. Thus, this method can be considered as a combination of HMC and the tempered transitions method. Compared to other tempering methods, our method has a distinctive advantage in the Gibbs sampler settings, where the target distribution changes at each step. We develop a practical tuning strategy for our method and demonstrate that it can construct globally mixing Markov chains targeting high-dimensional, multimodal distributions, using mixtures of normals and a sensor network localization problem.
READ FULL TEXT