SAR Image Segmentation using Vector Quantization Technique on Entropy Images

04/11/2010
by   H. B. Kekre, et al.
0

The development and application of various remote sensing platforms result in the production of huge amounts of satellite image data. Therefore, there is an increasing need for effective querying and browsing in these image databases. In order to take advantage and make good use of satellite images data, we must be able to extract meaningful information from the imagery. Hence we proposed a new algorithm for SAR image segmentation. In this paper we propose segmentation using vector quantization technique on entropy image. Initially, we obtain entropy image and in second step we use Kekre's Fast Codebook Generation (KFCG) algorithm for segmentation of the entropy image. Thereafter, a codebook of size 128 was generated for the Entropy image. These code vectors were further clustered in 8 clusters using same KFCG algorithm and converted into 8 images. These 8 images were displayed as a result. This approach does not lead to over segmentation or under segmentation. We compared these results with well known Gray Level Co-occurrence Matrix. The proposed algorithm gives better segmentation with less complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset