Scalable Edge Partitioning

08/20/2018
by   Sebastian Schlag, et al.
0

Edge-centric distributed computations have appeared as a recent technique to improve the shortcomings of think-like-a-vertex algorithms on large scale-free networks. In order to increase parallelism on this model, edge partitioning - partitioning edges into roughly equally sized blocks - has emerged as an alternative to traditional (node-based) graph partitioning. In this work, we give a distributed memory parallel algorithm to compute high-quality edge partitions in a scalable way. Our algorithm scales to networks with billions of edges, and runs efficiently on thousands of PEs. Our technique is based on a fast parallelization of split graph construction and a use of advanced node partitioning algorithms. Our extensive experiments show that our algorithm has high quality on large real-world networks and large hyperbolic random graphs, which have a power law degree distribution and are therefore specifically targeted by edge partitioning

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset