SCFlow: Optical Flow Estimation for Spiking Camera

10/08/2021
by   Liwen Hu, et al.
3

As a bio-inspired sensor with high temporal resolution, Spiking camera has an enormous potential in real applications, especially for motion estimation in high-speed scenes. Optical flow estimation has achieved remarkable success in image-based and event-based vision, but applied in spike stream from spiking camera. conventional optical flow algorithms are not well matched to the spike stream data. This paper presents, SCFlow, a novel deep learning pipeline for optical flow estimation for spiking camera. Importantly, we introduce an proper input representation of a given spike stream, which is fed into SCFlow as the sole input. We introduce the first spiking camera simulator (SPCS). Furthermore, based on SPCS, we first propose two optical flow datasets for spiking camera (SPIkingly Flying Things and Photo-realistic High-speed Motion, denoted as SPIFT and PHM respectively) corresponding to random high-speed and well-designed scenes. Empirically, we show that the SCFlow can predict optical flow from spike stream in different high-speed scenes, and express superiority to existing methods on the datasets. All codes and constructed datasets will be released after publication.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset