Schema Integration on Massive Data Sources

08/05/2018
by   Tianbao Lia, et al.
0

As the fundamental phrase of collecting and analyzing data, data integration is used in many applications, such as data cleaning, bioinformatics and pattern recognition. In big data era, one of the major problems of data integration is to obtain the global schema of data sources since the global schema could be hardly derived from massive data sources directly. In this paper, we attempt to solve such schema integration problem. For different scenarios, we develop batch and incremental schema integration algorithms. We consider the representation difference of attribute names in various data sources and propose ED Join and Semantic Join algorithms to integrate attributes with different representations. Extensive experimental results demonstrate that the proposed algorithms could integrate schemas efficiently and effectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset