SE-MD: A Single-encoder multiple-decoder deep network for point cloud generation from 2D images

12/30/2021
by   Abdul Mueed Hafiz, et al.
0

3D model generation from single 2D RGB images is a challenging and actively researched computer vision task. Various techniques using conventional network architectures have been proposed for the same. However, the body of research work is limited and there are various issues like using inefficient 3D representation formats, weak 3D model generation backbones, inability to generate dense point clouds, dependence of post-processing for generation of dense point clouds, and dependence on silhouettes in RGB images. In this paper, a novel 2D RGB image to point cloud conversion technique is proposed, which improves the state of art in the field due to its efficient, robust and simple model by using the concept of parallelization in network architecture. It not only uses the efficient and rich 3D representation of point clouds, but also uses a novel and robust point cloud generation backbone in order to address the prevalent issues. This involves using a single-encoder multiple-decoder deep network architecture wherein each decoder generates certain fixed viewpoints. This is followed by fusing all the viewpoints to generate a dense point cloud. Various experiments are conducted on the technique and its performance is compared with those of other state of the art techniques and impressive gains in performance are demonstrated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset