Searching for Interaction Functions in Collaborative Filtering

06/28/2019
by   Quanming Yao, et al.
0

Interaction function (IFC), which captures interactions among items and users, is of great importance in collaborative filtering (CF). The inner product is the most popular IFC due to its success in low-rank matrix factorization. However, interactions in real-world applications can be highly complex. Many other operations (such as plus and concatenation) have also been proposed, and can possibly offer better performance than the inner product. In this paper, motivated by the success of automated machine learning, we propose to search for proper interaction functions (SIF) for CF tasks. We first design an expressive search space for SIF by reviewing and generalizing existing CF approaches. We then propose to represent the search space as a structured multi-layer perceptron, and design a stochastic gradient descent algorithm which can simultaneously update both architectures and learning parameters. Experimental results demonstrate that the proposed method can be much more efficient than popular AutoML approaches, and also obtain much better prediction performance than state-of-the-art CF approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset