SEEDS: Exponential SDE Solvers for Fast High-Quality Sampling from Diffusion Models

by   Martin Gonzalez, et al.

A potent class of generative models known as Diffusion Probabilistic Models (DPMs) has become prominent. A forward diffusion process adds gradually noise to data, while a model learns to gradually denoise. Sampling from pre-trained DPMs is obtained by solving differential equations (DE) defined by the learnt model, a process which has shown to be prohibitively slow. Numerous efforts on speeding-up this process have consisted on crafting powerful ODE solvers. Despite being quick, such solvers do not usually reach the optimal quality achieved by available slow SDE solvers. Our goal is to propose SDE solvers that reach optimal quality without requiring several hundreds or thousands of NFEs to achieve that goal. In this work, we propose Stochastic Exponential Derivative-free Solvers (SEEDS), improving and generalizing Exponential Integrator approaches to the stochastic case on several frameworks. After carefully analyzing the formulation of exact solutions of diffusion SDEs, we craft SEEDS to analytically compute the linear part of such solutions. Inspired by the Exponential Time-Differencing method, SEEDS uses a novel treatment of the stochastic components of solutions, enabling the analytical computation of their variance, and contains high-order terms allowing to reach optimal quality sampling ∼3-5× faster than previous SDE methods. We validate our approach on several image generation benchmarks, showing that SEEDS outperforms or is competitive with previous SDE solvers. Contrary to the latter, SEEDS are derivative and training free, and we fully prove strong convergence guarantees for them.


page 1

page 2

page 3

page 4


Elucidating the solution space of extended reverse-time SDE for diffusion models

Diffusion models (DMs) demonstrate potent image generation capabilities ...

GENIE: Higher-Order Denoising Diffusion Solvers

Denoising diffusion models (DDMs) have emerged as a powerful class of ge...

Improved Order Analysis and Design of Exponential Integrator for Diffusion Models Sampling

Efficient differential equation solvers have significantly reduced the s...

Fast Sampling of Diffusion Models with Exponential Integrator

The past few years have witnessed the great success of Diffusion models ...

Accelerating Guided Diffusion Sampling with Splitting Numerical Methods

Guided diffusion is a technique for conditioning the output of a diffusi...

SciRE-Solver: Accelerating Diffusion Models Sampling by Score-integrand Solver with Recursive Difference

Diffusion models (DMs) have made significant progress in the fields of i...

UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models

Diffusion probabilistic models (DPMs) have demonstrated a very promising...

Please sign up or login with your details

Forgot password? Click here to reset