Self-Attentive Neural Collaborative Filtering

06/17/2018
by   Yi Tay, et al.
6

The dominant, state-of-the-art collaborative filtering (CF) methods today mainly comprises neural models. In these models, deep neural networks, e.g.., multi-layered perceptrons (MLP), are often used to model nonlinear relationships between user and item representations. As opposed to shallow models (e.g., factorization-based models), deep models generally provide a greater extent of expressiveness, albeit at the expense of impaired/restricted information flow. Consequently, the performance of most neural CF models plateaus at 3-4 layers, with performance stagnating or even degrading when increasing the model depth. As such, the question of how to train really deep networks in the context of CF remains unclear. To this end, this paper proposes a new technique that enables training neural CF models all the way up to 20 layers and beyond. Our proposed approach utilizes a new hierarchical self-attention mechanism that learns introspective intra-feature similarity across all the hidden layers of a standard MLP model. All in all, our proposed architecture, SA-NCF (Self-Attentive Neural Collaborative Filtering) is a densely connected self-matching model that can be trained up to 24 layers without plateau-ing, achieving wide performance margins against its competitors. On several popular benchmark datasets, our proposed architecture achieves up to an absolute improvement of 23 improvement in terms of nDCG@10 and Hit Ratio (HR@10) scores over several strong neural CF baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset