Self-Organizing mmWave MIMO Cell-Free Networks With Hybrid Beamforming: A Hierarchical DRL-Based Design

by   Yasser Al-Eryani, et al.

In a cell-free wireless network, distributed access points (APs) jointly serve all user equipments (UEs) within the their coverage area by using the same time/frequency resources. In this paper, we develop a novel downlink cell-free multiple-input multiple-output (MIMO) millimeter wave (mmWave) network architecture that enables all APs and UEs to dynamically self-partition into a set of independent cell-free subnetworks in a time-slot basis. For this, we propose several network partitioning algorithms based on deep reinforcement learning (DRL). Furthermore, to mitigate interference between different cell-free subnetworks, we develop a novel hybrid analog beamsteering-digital beamforming model that zero-forces interference among cell-free subnetworks and at the same time maximizes the instantaneous sum-rate of all UEs within each subnetwork. Specifically, the hybrid beamforming model is implemented by using a novel mixed DRL-convex optimization method in which analog beamsteering between APs and UEs is conducted based on DRL while digital beamforming is modeled and solved as a convex optimization problem. The DRL models for network clustering and hybrid beamsteering are combined into a single hierarchical DRL design that enables exchange of DRL agents' experiences during both network training and operation. We also benchmark the performance of DRL models for clustering and beamsteering in terms of network performance, convergence rate, and computational complexity.


page 25

page 27

page 28


PrecoderNet: Hybrid Beamforming for Millimeter Wave Systems Using Deep Reinforcement Learning

Millimeter wave (mmWave) with large-scale antenna arrays is a promising ...

Beam Alignment for the Cell-Free mmWave Massive MU-MIMO Uplink

Millimeter-wave (mmWave) cell-free massive multi-user (MU) multiple-inpu...

Multiple Access in Dynamic Cell-Free Networks: Outage Performance and Deep Reinforcement Learning-Based Design

In future cell-free (or cell-less) wireless networks, a large number of ...

Deep Reinforcement Learning for Energy-Efficient Beamforming Design in Cell-Free Networks

Cell-free network is considered as a promising architecture for satisfyi...

Distributed Uplink Beamforming in Cell-Free Networks Using Deep Reinforcement Learning

The emergence of new wireless technologies together with the requirement...

Exploiting Deep Reinforcement Learning for Edge Caching in Cell-Free Massive MIMO Systems

Cell-free massive multiple-input-multiple-output is promising to meet th...

Distributed Resource Allocation Optimization for User-Centric Cell-Free MIMO Networks

We develop two distributed downlink resource allocation algorithms for u...

Please sign up or login with your details

Forgot password? Click here to reset