Semantic Edge Detection with Diverse Deep Supervision
Semantic edge detection (SED), which aims at jointly extracting edges as well as their category information, has far-reaching applications in domains such as semantic segmentation, object proposal generation, and object recognition. SED naturally requires achieving two distinct supervision targets: locating fine detailed edges and identifying high-level semantics. We shed light on how such distracted supervision targets prevent state-of-the-art SED methods from effectively using deep supervision to improve results. In this paper, we propose a novel fully convolutional neural network architecture using diverse deep supervision (DDS) within a multi-task framework where lower layers aim at generating category-agnostic edges, while higher layers are responsible for the detection of category-aware semantic edges. To overcome the distracted supervision challenge, a novel information converter unit is introduced, whose effectiveness has been extensively evaluated in several popular benchmark datasets, including SBD, Cityscapes, and PASCAL VOC2012. Source code will be released upon paper acceptance.
READ FULL TEXT