Semantic Image Search for Robotic Applications
Generalization in robotics is one of the most important problems. New generalization approaches use internet databases in order to solve new tasks. Modern search engines can return a large amount of information according to a query within milliseconds. However, not all of the returned information is task relevant, partly due to the problem of polysemes. Here we specifically address the problem of object generalization by using image search. We suggest a bi-modal solution, combining visual and textual information, based on the observation that humans use additional linguistic cues to demarcate intended word meaning. We evaluate the quality of our approach by comparing it to human labelled data and find that, on average, our approach leads to improved results in comparison to Google searches, and that it can treat the problem of polysemes.
READ FULL TEXT