Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments

10/13/2021
by   Yu Zhang, et al.
0

Semantic role labeling is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines:1) BIO-based and 2) span-based. Despite effectiveness, they share some intrinsic drawbacks of not explicitly considering internal argument structures, which may potentially hinder the model's expressiveness. To remedy this, we propose to reduce SRL to a dependency parsing task and regard the flat argument spans as latent subtrees. In particular, we equip our formulation with a novel span-constrained TreeCRF model to make tree structures span-aware, and further extend it to the second-order case. Experiments on CoNLL05 and CoNLL12 benchmarks reveal that the results of our methods outperform all previous works and achieve the state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset