SemRe-Rank: Incorporating Semantic Relatedness to Improve Automatic Term Extraction Using Personalized PageRank

11/09/2017
by   Ziqi Zhang, et al.
0

Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that no existing methods can consistently outperforms others in all domains. This work adopts a different strategy towards this problem as we propose to 'enhance' existing ATE methods instead of 'replace' them. We introduce SemRe-Rank, a generic method based on the concept of incorporating semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank applies a personalized PageRank process to a semantic relatedness graph of words to compute their 'semantic importance' scores, which are then used to revise the scores of term candidates computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all methods and across all datasets. The best performing variants of SemRe-Rank have achieved, on some datasets, an improvement of 0.15 (on a scale of 0 1.0) in terms of the precision in the top ranked K term candidates, and an improvement of 0.28 in terms of overall F1.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro