SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans

11/29/2019
by   Angela Dai, et al.
20

We present a novel approach that converts partial and noisy RGB-D scans into high-quality 3D scene reconstructions by inferring unobserved scene geometry. Our approach is fully self-supervised and can hence be trained solely on real-world, incomplete scans. To achieve self-supervision, we remove frames from a given (incomplete) 3D scan in order to make it even more incomplete; self-supervision is then formulated by correlating the two levels of partialness of the same scan while masking out regions that have never been observed. Through generalization across a large training set, we can then predict 3D scene completion without ever seeing any 3D scan of entirely complete geometry. Combined with a new 3D sparse generative neural network architecture, our method is able to predict highly-detailed surfaces in a coarse-to-fine hierarchical fashion, generating 3D scenes at 2cm resolution, more than twice the resolution of existing state-of-the-art methods as well as outperforming them by a significant margin in reconstruction quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro