Signal Coding and Perfect Reconstruction using Spike Trains

05/31/2019
by   Anik Chattopadhyay, et al.
0

In many animal sensory pathways, the transformation from external stimuli to spike trains is essentially deterministic. In this context, a new mathematical framework for coding and reconstruction, based on a biologically plausible model of the spiking neuron, is presented. The framework considers encoding of a signal through spike trains generated by an ensemble of neurons via a standard convolve-then-threshold mechanism. Neurons are distinguished by their convolution kernels and threshold values. Reconstruction is posited as a convex optimization minimizing energy. Formal conditions under which perfect reconstruction of the signal from the spike trains is possible are then identified in this setup. Finally, a stochastic gradient descent mechanism is proposed to achieve these conditions. Simulation experiments are presented to demonstrate the strength and efficacy of the framework

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset