SimViT: Exploring a Simple Vision Transformer with sliding windows
Although vision Transformers have achieved excellent performance as backbone models in many vision tasks, most of them intend to capture global relations of all tokens in an image or a window, which disrupts the inherent spatial and local correlations between patches in 2D structure. In this paper, we introduce a simple vision Transformer named SimViT, to incorporate spatial structure and local information into the vision Transformers. Specifically, we introduce Multi-head Central Self-Attention(MCSA) instead of conventional Multi-head Self-Attention to capture highly local relations. The introduction of sliding windows facilitates the capture of spatial structure. Meanwhile, SimViT extracts multi-scale hierarchical features from different layers for dense prediction tasks. Extensive experiments show the SimViT is effective and efficient as a general-purpose backbone model for various image processing tasks. Especially, our SimViT-Micro only needs 3.3M parameters to achieve 71.1 top-1 accuracy on ImageNet-1k dataset, which is the smallest size vision Transformer model by now. Our code will be available in https://github.com/ucasligang/SimViT.
READ FULL TEXT