Single-Shot Multi-Person 3D Body Pose Estimation From Monocular RGB Input

12/09/2017
by   Dushyant Mehta, et al.
0

We propose a new efficient single-shot method for multi-person 3D pose estimation in general scenes from a monocular RGB camera. Our fully convolutional DNN-based approach jointly infers 2D and 3D joint locations on the basis of an extended 3D location map supported by body part associations. This new formulation enables the readout of full body poses at a subset of visible joints without the need for explicit bounding box tracking. It therefore succeeds even under strong partial body occlusions by other people and objects in the scene. We also contribute the first training data set showing real images of sophisticated multi-person interactions and occlusions. To this end, we leverage multi-view video-based performance capture of individual people for ground truth annotation and a new image compositing for user-controlled synthesis of large corpora of real multi-person images. We also propose a new video-recorded multi-person test set with ground truth 3D annotations. Our method achieves state-of-the-art performance on challenging multi-person scenes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset